“企业家能力”的经济含义的正规阐述
为了简便起见,我们假设一个个体在决定是成立自己的厂家还是出租所有他拥有的资源时,不考虑非货币因素。同样为了简便起见,我们假设个人的企业家能力如果还是利用了的话,将用于所讨论的产品中,这样我们就能避开选择生产什么产品的问题。
因此,个人的企业家能力就可以用一个生产函数来说明,它表示在给定条件下,包括给定“租用”资源量(包括他从自己那里“租”来的),他所能生产的产品最大数量。这样,如果Xi表示个人生产的产品数量,a、b、c、…为他使用的各种要素的数量,我们就可以把xi=f(a、b、c,……)看作这个人的生产函数。这个生产函数一般来说并非对所有a、b、c…的值都是一次齐次的,因为它不包括影响产量的所有变量,而且包括个人的企业家能力能够控制的变量。特别是假设了企业家能力不会大于他拥有的量,并且可能存在他不能控制的额外的变量(例如城市之间铁路的距离等)。当然,如果生产函数对a、b、c…是一次齐次的,这就意味着在这个例子中企业家能力是不重要的,并且也没有对企业规模的限制。
可以想像两个个人的生产函数完全相等;就是说,对所有a、b、c…来说fi(a、b、c…)-fj(a、b、c…)=O。在这种情况下,这两个人将具有相同的企业家能力。如果无限数的个人都是这样的话,生产函数就等于根据我们的各项假设企业家能力的一条供给曲线,该曲线在价格为零时具有完全弹性(因为我们已经排除了非货币报酬和企业家能力在其他产业中的使用)。在均衡状态中,企业家能力的报酬将是零,但只要生产函数对a、b、c…不是一次齐次的,就存在对厂商规模的限制。(注意,不同厂商生产函数完全相等,并不能保证该产业具有水平的供给曲线;它还需要a、b、c…的水平供给曲线。)
如果对所有的a、b、c…来说,fi(a、b、c…)>fj(a、b、c…),我们就可以明确地说,个人i比个人j具有更大的企业家能力。但是,总体上说没有理由认为这一关系成立。对于某些组合的a、b、c…来说,fi将大于fj,对于某些组合它又会小于fj。如果是这样的话,就无法明确比较两个人的企业家能力。
技术上的外部经济或不经济,意味着影响个体生产函数的“给定条件”之一,是该产业(或许是若干产业的一个集合)的产量。这在形式上可以通过用把该产业的产量作为一个变量,我们用Q来表示,包括到生产函数中的方式来说明。这样,个人i的生产函数就变为xi=fi(a、b、c…,Q)。根据axi/aQ>、=、<O的情况,对一组特定的a、b、c…Q的值就分别对应地存在着技术上的外部经济,既无技术上的外部经济也无外部不经济,或者存在技术上的外部不经济。
厂商经济学
不可避免的(“固定的”)与可避免的(“可变的”)契约成本,非契约成本(“利润”)
把一个厂商的总成本定义为等于——或者进一步说,是恒等于——厂商的总收入是很方便的。这样,总成本就包括对所有生产要素,包含厂家所有者的企业家能力在内支付的所有款项,它可能是正的或负的,实际的或转移的。
这些对生产要素的总支付,至少在概念上,可以划分为三个部分:
(1)不可避免的契约成本(“固定”成本)。存在着某种厂商有义务要对生产要素支付的最低数额,不管这个厂商做了什么,也不管它是怎样做的。既然这种不可避免的契约成本不受厂商行为的影响,而且不管厂商做了什么都会发生,故其大小也就不能影响厂商的行为——“过去的已经过去”,“滞留成本已经滞留”等等。在这个名义下的成本,一般就看作固定成本。这个术语是很方便的,虽然它可能导致固定成本与由所谓固定要素引起的成本之间的混乱,我们仍将使用它。我们在下面会看到,所谓固定要素可以引出非固定成本。同理,所谓可变要素也可以引出固定成本。
(2)可避免的契约成本(“可变”成本)。厂商的另一部分成本要依赖于它做了什么,而不需看它是怎样做的。厂商一旦决定了生产多少、怎样生产,它就必须要承担的一个总支付额,我们称为总契约成本。根据我们的假设,契约成本包括对不为厂商所有的“租用要素”的全部支付,加上其数量等于出租给其他厂商使用时可获得的对厂商拥有要素的转移支付。总的契约支付超过不可避免成本的部分,我们称为可避免的契约成本。这些成本的数量视厂商的生产决策而定——关于生产多少和怎样生产的决策——所以这些成本在厂商的决策中就起着至关重要的作用。这个名义下的成本一般称为可变成本。这个术语是很方便的,虽然它可能导致可变成本与由于所谓可变要素引起的成本之间的混乱,我们仍将使用它。我们已经指出过,固定要素可以产生可变成本,可变要素也可产生固定成本。
固定成本与可变成本的区别,也要看被认为厂商可以选择的范围。例如,可能会有这样一些成本,没有业务时它是可以避免的,但是只要厂商生产任何数量的产品,就完全不能避免了,如果选择的范围包括停业,这些成本就是可变成本,否则就是固定成本。
(3)非契约成本(“利润”)。最后,还有一些支付款项,其数量依赖于厂商的实际收入;这部分我们称为非契约成本。它们的数量等于总收入与总契约成本之间的差额,根据我们的假设,它由企业家能力的所有者获得。这些支付额一般都称为利润。但这个术语有些使人误解的东西,实际的非契约成本决不可能事先决定。它们只有在事情结束后才能知道,而且受制于所有随机的或偶然的事件,厂商的错误,等等。因此,区分实际非契约成本和预期非契约成本是很重要的。实际的和预期的非契约成本之间的差额构成了利润或纯利润——这是一种由不确定性引起的、不可预测的剩余。另一方面,预期的非契约成本,应看作企业家能力的租金或准租金。它们是隐藏在厂商决策后面的推动力。对任何给定的产量而言,厂商都被认为在寻求使契约成本达到最小,以便使那个产量的非契约成本最大化;也可以认为是在选择带来最大的预期非契约成本的产量。
预期非契约成本,当然也可能是负的。这就是说,预期总收入可能低于总契约成本。但是,从定义上说,厂商决不会接受在绝对值上将大于固定成本的负的预期非契约成本,因为在最坏的情况下,厂商可以决定使可变成本为零,而且厂商收入不可能是负数。所以,除非固定成本和预期非契约成本的代数和等于零或更大些,否则厂商的整套生产决策就不能看作是最优的。当然,这是最优的一个必要的但不是充分的条件。
我们可以总结说,厂商应被视为在寻求预期收入和可变成本之间差额的最大化。既然根据定义存在一些可变成本为零的生产决策,那么就总存在一些上述差额为非负数的决策。决定预期收入的条件应该结合对厂商产量的需求进行分析,决定可变成本的条件则应根据成本曲线进行分析,因此在画成本曲线时我们需要单独考虑可变成本。
要素的供给曲线——“时期”的长度
为了简便起见,我们可以假设,厂商的要素供给曲线或者是处处都有完全弹性,即如图5.15(a)所示,或者是一部分有完全弹性,后面部分就完全无弹性,如图5.15(b)。
具有像图5.15(a)中那样的供给曲线的要素,通常称为可变要素,具有像图5.15(b)中那样的供给曲线的那些要素,则称为固定要素。这些名称有些使人误解的地方:改变所使用的所谓固定要素的物理数量,可能是完全可行的。重要的一点是,存在一个最大量——图5.15(b)中的OM——可以认为它在一系列所说的调整中是能够达到的。如果说最大量反映了技术因素——例如,事实上给定已经造好的机器种类,并且必须在所说的调整中以那种方式使用——供给曲线的水平部分一般来说就将与横轴重合。但即使如此,还是可能使某些机器闲置起来,而使用其他机器。即使这种情况是不可能的,因为,我们可以说,只有一部机器,但还是可能“改变”它的用途即完全不使用它。如果该最大值反映了合同的内容——例如与一类工人的长期合同——则相同的技术可能性也应该很可能可以实现。那样的话,水平部分是否与横轴重合,要看合同的条件;这样的条件可能是:使用要素比不使用要支付更多的报酬(例如,一个与法律方面的厂商关于法律服务的合同,包括每年的法律费再加提供每单位服务的费用)。此外,对某些问题来说只有图5.15(b)供给曲线的水平部分是适用的,在那种情况下,可以将供给曲线看作似乎处处都是水平的。
我们已经指出,由于固定要素而产生的成本,并不必然与固定成本一致,由于可变要素而产生的成本,也并不必然与可变成本相一致。若厂商没有使用任何固定要素,他就不必对固定要素的所有者支付任何款项的话,则对这一要素支付的全部款项都应包括在可变成本中。或者,再假设一例,固定要素可能是厂商自己拥有的一间厂房。如果厂商准备完全放弃对该建筑的使用(这可能要求厂商停业),厂商可以出售该建筑,但除此之外它就不可能从自己的业务之外获得任何报酬。如果这样,每年或其他时间单位的销售价格的等价物,就是由该建筑物引起的可变成本。同理,厂商可能有义务向可变要素的所有者支付一笔固定的费用,而不管自己是否使用了该要素。这样一笔费用将包括在固定成本中。
如果具备下列条件,固定成本与可变成本之间的差别和固定要素与可变要素之间的差别,就完全是相同的。这些条件是:(1)对每个可变要素的总支付额,等于其供给曲线的纵坐标乘以相应的数量[在图5.15(a)中,Op乘以所用要素的数量];(2)固定要素供给曲线的水平部分与横轴重合[图5.15(b)中,Op=O](3)合同规定的对固定要素的支付不会因完全不使用它而改变。
我们的生产函数没有明确地把企业家能力作为一个生产要素;更正确地说,它被认为决定着函数的形式。但我们可以通过假设它对每个厂商的供给曲线都类似图5.15(b)那样,即以OM为一个单位,水平部分与横轴重合,而认为它已包括在其他生产要素之中,但是用这种方式解释时,我们必须记住,每个厂商的企业家能力都是一个单独的生产要素,应该与所有其他厂商的企业家能力区别开来。
按正规的做法,我们将根据要素供给曲线的特征来区分“时期”。在最短的短期中,所有供给曲线都有一个如图5.15(b)中的无弹性部分:所有要素都是固定的。在最长的长时期里,所有供给曲线都如图5.15(a)中所示:所有要素都是可变的。应该指出,这个最长的长时期,意味着只有企业家能力供给曲线的水平部分是适用的,所以也就意味着存在无数具有相同生产函数的潜在厂商。中等长度的时期表明有些供给曲线如图5.15(a)中的那样,有些象图5.15(b)中的那样。当然,哪一种要素处于哪一类状况,取决于手头的问题。
给定产量时最小成本的条件
如果一个厂商要生产一种特定产品,就会有某种要素组合,使生产那种产品的成本最小。众所周知,使成本最小化的条件由下面的方程来确定:
(1)MPPa/MFCa=MPPb/MFCb=…
Xo=fi(a,i,…)
这里MPPa代表要素A的边际物质产品,即MPPa=afi/aa,MPPb…含义相同;MFCa代表A的边际要素成本,MFCb……的含义相同,Xo是需要生产的特定产品;而fi(a,b,…)则是厂商的生产函数。
不管生产要素供给曲线的形状如何,条件(1)都是成立的,但是为了简化起见,我们要继续仅限于考虑具有图5.15(a)和(b)所示的有限形式的要素供给曲线。
如果把要素供给曲线确定为有完全弹性,就像图5.15(a)那样,则只要有任何要素被利用,边际要素成本就等于价格(Op),而要素的价格就可以用方程(1)中相应比例的边际要素成本来代替。
如果确定供给曲线在某点之后是完全无弹性的,像图5.15(b)中那样,则当产量为OM时边际要素成本就是OP以上任何一点,而当产量在O与OM之间时,边际要素成本为OP。要根据方程(1)决定生产一个给定的产量时使用的要素最优组合,则只要所得的解是一个等于或小于MPPd/Op(d=OM)的比率的公值,那么,这样一个要素(譬如要素D)的比率在解方程(1)时就可以忽略不计,这样,此边际要素成本就可确定为等于为使该比率等于其他要素的相应比率,且使要素的使用量为OM所需的任何一个数,如果此公比大于MPPd/Op(d=OM),它就不是解。因此,MFCd就应该被方程(1)中的Op来代替,从而解出新的方程。这将涉及到使要素D的使用量小于OM。当OP等于零,且当D的数量为OM的边际物质产品为负数时,就会出现这第二种可能性;那么所使用的D数量将是任何一个使其边际物质产品等于零的数量。
总的、边际的和平均的可变成本曲线
对每个可能的产量,我们都可以设想厂商是通过解方程(1)来决定怎样生产那个产量的。与这样一个决策相对应,就有某种总的可变成本——其总数等于那个产量的契约成本和与厂商的决策相对应的最小契约成本之间的差额。我们可以在图形上将总可变成本表示为产量的函数。这条曲线可能具有各种形状,这要看生产要素具体的供给条件和厂商生产函数的具体形状。在图5.16(a)和(b)中描绘了多种可能的情形,以便说明可能影响总可变成本曲线形状的各种因素。
在图5.16(a)中,所有曲线的共同特征是它们都通过原点;即当产量接近零时,总可变成本也接近于零。这意味着,没有什么成本是可以通过停业而避免的。曲线A表示成本以固定的比例增长——两倍的产量就有两倍的成本等等。如果所有租用的要素都是可变的,厂商的生产函数是一阶齐次的,以致于企业家能力并不重要,这种曲线就会出现。
曲线B在起初是与A重合的,但是以后成本比产量增长得更快。这种情况的产生可能是由于存在一种或更多的固定要素,包括企业家能力,以及没有不可分割性。对于低产量,要素的最优组合要求固定要素少于最大数量,这就是说,厂商将按所有要素供给曲线的水平部分活动。产量的增长将通过按比例地增加所有要素的使用量,而得到要求可利用的固定要素有一个最大数量时,以这种方式实现产量的增长就不可能了。在固定要素的最大数量这一点上,B线与A线分开了。
曲线C要求的实质是和B同样的条件,但有一点除外,即固定要素和厂商控制之外的要素所规定的限制条件,从一开始就在某种程度上发挥着作用。曲线D表示成本最初的增加在比例上小于产量,这可能是由于所使用的任何要素或厂商控制之外的要素都具有不可分割性。
图5.16(b)基本上同样重新展示了四种情况,只是下面这点做了修改,即产量接近于零时,总可变成本并不接近于零。在所有四种情况里,都存在成本Ot,它在完全停业时可以避免,但是只要厂商仍然开业,它就是不可避免的——所有成本曲线都应解释成包含纵轴O和t之间的部分。这些成本可以由这样的项目构成,即对工厂设备的残值所牺牲的利息,根据合同对要素支付的固定报酬,而该合同只有在厂商停业时才可终止,还有每年的执照费,等等。
对每一个产量,我们都可以要求知道,对于产量的微小变化来说,每单位产量的变化将引起多少总可变成本的变化。当然,这是由总可变成本曲线的斜率给定的,并被称作边际成本。很明显,这样定义的边际成本,对曲线A和A’B和B’、C和C’、D和D’都是一样的。由此形成的四条边际成本曲线都画在图5.17中。然而,对于图5.16(a)和(b)中的总成本曲线来说,边际成本曲线的完全相同隐蔽了一个不是不必要的细节。就图5.16(a)中的曲线而言,总可变成本指相应的边际成本曲线以下的区域;就图5.16(b)中的曲线而言,总可变成本大于相应的边际成本曲线以下的区域,其大于的数量为Ot。
这个区别可以通过画出平均可变成本曲线来说明,这种曲线表明在每个产量水平上每单位产量的可变成本。图5.18(a)至(d)显示了平均可变成本曲线和边际成本曲线之间的关系。如果产量趋向于零时,总可变成本也趋向于零。则产量趋向于零时,平均可变成本接近于边际成本;否则,当产量趋向于零时平均可变成本趋向于无穷大。当然,在所有的情况下,平均可变成本在它们超过边际成本时是下降的,否则就是上升的。
这些平均可变成本曲线本身可看作相当特殊的边际成本曲线类型——它们表示生产一个给定的产量而不是完全不生产时引起的每单位产量的成本变化,而通常的边际成本曲线则表示在多生产或少生产一个很小的数量时引起的每单位产量的成本变化。
厂商的产量决策
图5.18中的成本曲线为回答大量关于厂商决策的不同问题奠定了基础。虽然总体上我们已经一直在讨论产品市场上的竞争条件,但是在这里我们可以进行更加一般的论述,并且也把垄断条件包括进来。
(1)对一条给定需求曲线而言的最优产量
单个厂商产品的需求曲线表示,在给定的需求条件下,厂商以各种价格能够售出的最大数量,伴随需求曲线而形成的边际曲线表示边际收入,这就是说,由于销售更多一点或更少一点而引起的总收入随每单位产量的变化而变化的那个比例。需求曲线上的价格,表示从相应的销售中获得的平均收入。和平均可变成本曲线一样,平均收入曲线也可以被看作一种相当特殊的边际曲线类型:它表示因销售既定的产量而不是全未销售而发生的每单位产品的总收入的变化。
现在我们要问,在给定的成本和需求条件下,厂商的最优产量是什么,这个问题接下去又可以细分为两个问题:(1)厂商完全应该生产什么产品吗?(2)假定要生产某种产品,该产品的最优产量是什么?
第一问题的答案由平均收益(即需求)曲线与平均可变成本曲线的比较给出;这些曲线就是与适用于此种分析目的的边际曲线。如果平均收益曲线处处都低于平均可变成本曲线,则厂商在生产某种产品时所增加的成本将比增加的收入多,所以最好什么也不生产。如果平均收益曲线在某一点或几点上高于平均可变成本曲线,则在这些点的某一点进行生产,就比完全不生产要好一些。
假定厂商准备生产某种产品,则该产品的最优数量可通过比较边际收入和边际成本曲线确定。如果对任何产量来说,边际收益大于边际成本,略为增加生产所增加的总收益要比总成本增加得更多,所以多生产一点是合算的。相反,如果边际收益小于边际成本,少生产一点所减少的总收益比减少的总成本更少,所以少生产一点是有利的。因此,最优产量就是边际收益等于边际成本的那一点。
如果我们略去厂商不生产任何产品的可能性,则可以将方程(1)加以扩展以便包括厂商的产量决策,并且通过去掉对特殊产量的限制,补充边际成本等于边际收益的要求,还可描述厂商的一般均衡。那么方程就变成:
MPPa/MFCa=MPPb/MFCb=…=1/MC=1/MR
X=fi(a,b,…)
这里MC是边际成本,MR为边际收益。
给定需求曲线和成本条件,最优产量显然就是一个数。为了获得联结需求曲线与最优产量的函数,有必要通过若干参数来描述需求曲线,然后把最优产量看作是这些参数的函数。例如,如果人们只限于考虑直线需求曲线,则对于给定的成本条件,最优产量可以表述为需求曲线的高度和斜率的函数。
能用一个单独的参数描述需求曲线的十分重要的特例是竞争时的情况,在这种情形中,厂商产品的需求曲线被看作是一条水平线。这条需求曲线因此完全可以通过它的高度即产品的市场价格来描述。把最优产量与需求曲线相联结的函数就可以描述为把最优产量与价格相联系的函数。
在这个特殊例子里,平均收益曲线和边际收益曲线是一致的,都等于价格。只有当价格高于最小平均可变成本时,厂商才会生产产品;如果价格高于这个水平,厂商将生产一个使价格等于边际成本的产量。对于图5.18(d)中D’情形的成本曲线来说,各种价格下最优产量的轨迹在图5.19中做了概括。价格低于Op时,最优产量为零。所以y轴的实线部分就是最优产量的轨迹;价格高于Op时,边际成本曲线的实线部分就是最优产量的轨迹。在Op点上,存在不连续性;水平的截线联结着两个可供选择的点,但该线上没有一点是最优的。这种不连续性在前面的A、B和C三例中并不存在。在前面的例A(和A’)中,最优产量对任何高于(不变的)边际成本的价格都是无穷大的,这就是为什么这种情况与竞争不相容的原因。
(2)厂商的供给曲线
我们要回顾一下,一群特定的供给方对商品的供给曲线,曾经定义为“在给定的供给条件下那些可达到的点与不可达到的点之间的分界线”而如果“供应者愿意按所述的价格供应所说的数量”,
则那些点就被认为是可达到的,在我们能够利用成本曲线画出一条如此定义的供给曲线之前,必须弄清楚另外一点:为了了解供方是否愿意按所说的价格供给所说的数量,我们假设他具有哪些其他的选择?有两种主要的可能性:(1)我们可以设想他只有选择停业——我们可以认为他面临着一个全部或全无的命题。(2)我们可以设想他选择供应所说的数量或任何更少的数量。
在第一种情形中——即全部或全无的情形——平均可变成本曲线显然是可达到和不可达到的点之间的分界线。厂商将宁愿要平均可变成本曲线以上的点,而不会选择不生产,相比之下,厂商宁愿什么也不生产,也不愿接受平均可变成本曲线以下的一点。
第二种情形——其中的其他可供选择的情况包括小于所说数量的供应——是两种情形中更有用处的一种,而且是一般画供给曲线时想得到的状况。在这种情形中,可达到的点与不可达到的点之间的分界线稍为有点复杂。对任何产量来说,最小供给价格或者是平均可变成本曲线的纵坐标,或者是边际成本曲线的纵坐标,即是较高的那个;供给曲线因此就是那些最小供给价格的轨迹。这个解释已在图5.20中针对D’的情形给出。实线是供给曲线;阴影区域(加上纵轴)是可达到的点。最小可变成本右边的点以及边际成本与平均可变成本曲线之间的点,根据全部或全无的原则是可达到的,这些点现在已被排除了,因为通过稍为减少产量可以避免的成本,现在在由那个产量获得的收益水平之上,少生产些才是厂商的利益所在。总之,人们可以把边际成本曲线和平均可变成本曲线想象为两者都表示不宜于不同产量变化类型的边际成本——边际成本曲线对应于产量的微小增加或减少,平均可变成本曲线对应于停产。如果两种类型的变化对厂商都是可能的,则具有较大边际成本的那条线显然应是起主导作用的一条,因此,两条曲线中较高的那条是适用的。在前一节的A、B和C三例中,平均可变成本曲线无论哪里都没有处在边际成本曲线以上。所以可以说供给曲线与边际成本曲线是一致的,而且也与各种价格下最优产量的轨迹是一致的;但是很明显,这种一致性一般来说是无效的。
供给曲线中由边际成本曲线给出的部分,对于大部分目的是适用的,因为厂商宁要这条曲线上的点,而不要可达到的、具有同样价格但产量较低的点。但事情可能并不总是如此。例如,假设不存在外部经济或不经济(这样我们就能够假设厂商的供给曲线独立于产业的产量),并假设存在大量具有图5.20中那样的供给曲线的潜在厂商,再假设政府规定了最低价格,其水平在平均可变成本曲线的最低点之上,并把相同的产量定额分配给任何要求配额厂商,而且总是使总配额数等于按该规定价格需要的数量。在这种情况下,均衡位置将在供给曲线的平均可变成本部分,因为除非该配额已减少到那个数量,否则厂商就会进入该产业。这个理想化的模型也适用于许多私人卡特尔协议。
不同“时期”的供给曲线之间的关系
到目前为止,我们一直在讨论一个单个的“时期”,也就是生产要素供给曲线的一个单个的集合。然而,很清楚,不同时期的供给曲线必然是相互关联的。省略某些在前一节引入的复杂情形,特别是那些由下降的平均可变成本引起的情形,将简化我们对这种联系的描述。因此,我们将回到早先考虑过的比较简单的例子,在该例中我们省略了不连续性,这样,厂商任何“时期”的供给曲线都可以看作是相应“时期”的边际成本曲线。
单个厂商
我们首先来考虑对任何单个厂商都是最长时期的情形。在这种情形中,如果我们仅限于考虑在图5.15(a)和(b)中所描绘的要素供给曲线的某些极端形式,则所有租用要素的供给曲线就都是水平线,或者如果我们考虑一般的情形,则上述供给曲线就是具有正斜率的,但在任何地方都不与数量轴成直角。
但是,厂商的企业家能力的情况又怎样呢?这个概念需要回顾一下,它是通过“厂商的生产函数”给出定义的,所以如果最长的时期将涉及企业家能力的不同供给条件,这就意味着厂商的生产函数在最长的时期里必然与其他时期不同。特别是,对单个厂商的企业家能力的具有无限弹性供给的最合理解释,似乎是说生产函数关于所有租用要素都是一次齐次的,这样,所有生产函数都乘以一个常数,将等于用同一个常数乘以产量。但那样在供给方面就不存在什么东西对厂商的规模规定一个限度;或者是产生垄断,或者在厂商中对产量的划分是任意而多变的,或者厂商的含义将消失。对最长时期的这种解释使我们的理论在说明我们感兴趣的中心问题之一时毫无用处:即厂商数量和规模的决定,所以,它似乎是于我们的目的不相适宜的解释。
相反,我们要假设所有时期的生产函数都是一样的。这就是说,我们把企业家能力解释为反映了函数的特性,无论根据新情况进行的调整如何完全,企业家能力也是需要的,而且,无论对租用要素的重新组织如何完整,租用的要素也是这种能力的一个不完全的替代物。
对这个最长的时期来说,生产任何数量(譬如Xo)的要素最优组合将通过解方程(1)来获得,这里把方程(1)重写一下:
MPPa/MFCa=MPPb/MFCb=MPPc/MFCc=1/MC
Xo=fi(a,b…)
边际要素成本将根据要素的长期供给曲线计算。如果这些供给曲线是水平的,则边际要素成本就等于要素的价格,否则,边际要素成本就是所用要素数量的函数。假定要素的最优组合由(ao,bo,Co…)给出。这意思是说,使用要素的这个最优组合,将有一个产量Xo被生产出来,方程(1)中的比例将都是相等的。这些比例的公值就是对生产要素每增加一个美元开支所增加的单位产量数目。就是说,它是长期边际成本的倒数。假定我们现在考虑任何一个短时期,其定义是对某些要素的数量固定在对这个特定的长时期适当的数值上,比如说,我们将a固定在ao上,这就是说,使A的供给曲线在a=ao点上垂直,但是让所有其他的要素成为可变的。这样我们实质上就能够去掉方程(1)中的第一个比率,会生产函数中的a=ao,并解出所有其他要素的值。很明显,其解为(bo,Co…),即与前面相同。我们的长期解告诉我们,那些值,包括a=ao,将得出一个产量Xo,并使方程(1)中的所有比率都相互相等。
这样,与任何长期相对应,总存在一个完整系列的短期,其边际成本等于长期边际成本。确实,对要素的最优长期组合来说,这是一个明显的条件:只有当任何一种可以设想的增加一单位产量的方法所增加的成本,和其他可以设想的方法一样多而不会超过时,给定产量的成本才能达到最低,而且特别要指出,使某些要素在数量上保持不变,而改变其他要素的数量,这也是一个可以设想的、增加一单位产量的方法。因此,长期边际成本曲线上的每一点,都将通过一系列短期边际成本曲线,我们可以说这些短期边际成本曲线与Xo相对应。
现在要考虑,我们从产量Xo过渡到一个较大的产量,譬如xo十△X时,究竟会怎么样,对应于这个新的产量,将存在一个新的最优长期组合,比如说(ao十△ao,bo十△bo,co+△co,…),以及一个新的长期边际成本,比如说LRMC。成本的增加量就是△X和LRMC的乘积。根据定义,这个增加的成本,不可能比任何其他增加△X产量的方法所增加的成本更大,否则新的组合就不是最优的。特别是,成本的增加不会比这样增加△X产量的方法所增加的成本更大,即不改变一个或更多的生产要素数量的方法。由此可知,如果产量大于Xo,则长期边际成本必然小于或等于任何对应于产量Xo的边际成本曲线上的短期边际成本。相反,如果产量减少了,则减少产量的长期技术必然要从成本方面减去,其减少量至少应同这样做的短期技术一样多,这说明如果产量低于Xo,长期边际成本必然大于或等于任何与产量Xo相对应的边际成本曲线上的短期边际成本。
同样的论点也适用于任何一对不同的时期,其不同在于,“短”期将所有在“长”期内保持不变的要素也都保持不变,而其他要素则不包括在内。例如,如果我们对“时期”设想一个特殊的顺序,这就是说,最长时期的下一个保持a=ao,再下一个,a=ao,b=bo,等等,而最短的时期则维持所有要素不变,当我们从较长时期推移到较短时期时,与Xo相对应的一组边际成本曲线就会逐步变得更接近垂直。
图5.21刻划了这种情形,它表现了两组边际成本曲线,一组与Xo相对应,另一组与X1相对应,标在短期边际成本曲线上的数字0、1、2、3,分别代表越来越长的时期,0是短期中最短的,当允许厂商进行调整的范围越来越大时,边际成本曲线就变得越来越平直。当然,存在着大量可能的“时期”顺序,人们的确能够设想出无数个时期,所以人们将获得一条连续的曲线,它完全充塞了标号o的曲线和长期边际成本曲线之间的空间。特定的问题则既要求确定时期的顺序,也要求确定时期的数目,这一点值得明确地给予考虑。
产业
如果不存在外部经济或不经济,则任何时期的产业供给曲线都将不过是相应时期的边际成本曲线的总和,没有任何东西需要进一步加以说明。在产业长期供给曲线的每一点,都有一束短期供给曲线穿过,它们随着时期长度的增加而变得越来越平直了。
引入外部经济或不经济,导致产业供给曲线与边际成本曲线总和之间的偏离。由此所引起的与当前问题有关联的唯一的复杂性是,这种偏离的程度对不同的时期可能是不同的。外部影响可能与特殊的要素有关系。对于这些要素维持不变的时期来说,可能就不存在外部影响;对更长的时期来说就可能存在外部影响。然而,这不会改变我们的结论,即时期越长,供给曲线越平直。
企业家能力的报酬,租金和准租金
竞争的均衡
各种生产要素的报酬显然取决于该产业的需求条件及供给条件。这些条件决定了被利用的各种租用要素的实际数量,并且进而通过要素的供给曲线,决定了这些要素的每单位价格,它们决定产业的厂商数目和厂商的产量,并因此决定了预期收入和预期契约成本之间的差额。这些租用要素并没有引起什么特殊的困难,但在某种范围内更详细地讨论对我们称为企业家能力的东西所付的报酬可能是值得的。
图5.22说明了与一个单个均衡位置相对应的若干可能性。最后一部分描述了一个具有正斜率供给曲线的产业的状况;其他部分描绘了四个不同厂商的情况。厂商名称后面的字母指上面描述过的例子。当产量接近零时,厂商1和2的总可变成本也趋向于零,这一点为下列事实所说明,即:当产量为零时,边际成本和平均可变成本是一样的。厂商1将始终具有不变的边际成本,直到有限的企业家能力——或者另一个固定要素——引起成本上升为止。如图所示,价格恰好等于最小平均可变成本,所以预期收入与预期可变成本就完全相等,没有给企业家能力留下任何报酬,而且收入也无法支付固定成本。如果需求下降,而且没有降低(通过外部影响)厂商1的成本条件,该厂商就会停止经营。厂商2的边际成本,起初下降,然后上升,这反映了某些技术上的不可分割性在起作用。阴影区域代表可用来作为企业家能力报酬的并支付固定成本的数量。如果这样,阴影区域也可以由边际成本曲线和水平价格线之间的区域给出,因为边际成本曲线以下的区域等于总可变成本。厂商3像厂商2一样,只是总可变成本不会随着产量接近于零而接近于零这一点不同,所以阴影区域是作为可以得到的企业家能力的报酬,并可用来支付固定成本,它小于边际成本曲线和价格线之间的区域。厂商4像厂商3一样,但是其可变成本是如此之高,以致于没有任何东西留作企业家能力的报酬以及用来支付固定成本。
图5.22中例示的情形完全可以作为一种没有固定成本的长期均衡状况。只要不存在受到激励,并准备争得企业家能力报酬的潜在厂商,这就是说,只要没有任何厂商现在虽未生产这种产品,但其具有OP以下的最小平均可变成本,则阴影区域所显示的、厂商2和3得到了企业家能力报酬这一事实,就不会威胁均衡的稳定性。
对于长期均衡状况而言,阴影区域可以描述为厂商2和3所拥有的“稀缺的”企业家能力的“租金”。在估价厂商2和3的所有者的“财富”或资本价值时,这个“租金”也将资本化,因为它是一种持久的报酬。通常,这个租金被包括在“总成本”之中,而假设的、其他产量的平均成本,则根据其他产量的“租金”将是相同的这一假定来计算,由此产生一个平均总单位成本曲线,就像图5.23中为厂商3所画的那样。但是应该强调,这条曲线与其他曲线相比,具有完全不同的含义和作用:它是最终均衡的结果或后果,而不是它的一个决定因素,除了与q3相对应的点以外,这条曲线上的任何一点都没有重要性,不管是否存在外部经济或不经济。例如,假定不存在外部经济或不经济,并且假定产业的需求曲线上升了。厂商的边际和平均成本曲线不会受影响,并且仍将决定厂商的产量。但是阴影部分就会因此而扩大,ATUC曲线就必须重画了。这就是到目前为止并未使用该曲线的原因;它更是使人误解而于事无补。
如果图5.22中描绘的情形不是一种长期均衡状况而是一种特殊的短期状况,则阴影区域将不仅包括企业家能力的报酬,而且包括超过可变成本中对其他固定要素的支付而给予它们的报酬。如果需求保持不变,则向更长时期的过渡将意味着在成本曲线和产业供给曲线方面有所变化,而这就意味着阴影区域范围将扩大或缩小。如果这样,阴影区域可以看作包括了对固定要素的“准租金”:说“租金”是因为像企业家能力的租金一样,对所讨论的特定时期来说,它们是被决定的价格,而不是决定的价格,说“准”是因为和企业家能力的报酬不同,它们只是暂时被决定的价格。
只有当所有的厂商都处于图5.22的厂商1或厂商4的状祝时,对所有厂商来说,在长期中的企业家能力的报酬才会为零。出现这个结果的条件是,存在一个足够大数量的厂商,它们都具有相同的最小平均可变成本,不需要再添加其他条件,只要最小平均可变成本是相同的,成本曲线的形状就可以在任何其他方面发生变化。另外,如果产业所有租用要素的供给曲线都是水平线,而且不存在技术上的外部或内部经济,则产业供给曲线将是水平线,这可以看作是产业没有使用特殊要素的情形。然而要注意,单个厂商的边际成本曲线不一定是水平线,所以厂商的数量和规模仍然是确定的。
垄断
如果厂商被看作一个垄断者,那就是说,它面对着它的产品的具有负斜率的需求曲线,则供给曲线的概念对解释它的行为就没什么帮助。因此适用的函数就是把它的最优产量与其需求曲线的形状和形式联起来的函数。然而前面关于企业家能力报酬的讨论,仍然完全有效。
图5.24描述了一个垄断者的状况,为了简化起见,我们可以假设它描述了一个没有固定成本的长期均衡状况。阴影区域仍然代表企业能力的报酬。也仍然假定,长期均衡的事实意味着,对企业家能力的正数的报酬不会危及这种均衡。显然,没有任何有动力驱使它去取得这种报酬的潜在厂商有能力这样做。阴影区域还可以看作是稀缺的企业家能力的一种“租金”。
同样,既然“租金”是一种持久收入,那么在估价资本价值或厂商所有者的“财富”时,阴影区域所显示的“租金”将被资本化。而且,根据在其他产量水平上,“租金”将是相同的这一假设,仍然可以计算出一条假设的平均总单位成本曲线,从而得到一条如图5.24中所画的ATUC曲线。但这条曲线与其他成本曲线相比,也仍然具有完全不同的含义和作用:这是最终均衡的结果或后果,不是最终均衡的决定因素,而且除了与q点相对应的那点之外,这条曲线上没用任何一点是重要的。的确,需求曲线本身比标有ATUC的曲线更应该被认为是一条平均总单位成本曲线,因为如果由于错误生产了一个并非Oq的产量,则实际总单位成本将由相应产量的需求曲线的纵坐标给出。
特别是,常常由如图5.24的图中引出的推论,即垄断者均试图按技术上小于最有效益的规模经营,显然是不能成立的。假设的ATUC完全不能说明技术上的效益,它只是对总成本等于总收入常规的另一种说法。设需求条件变化但技术条件不变,因而边际和平均可变成本曲线将改变,但ATUC曲线将必须重画,以便在新的最优产量水平上与新需求曲线相切。在这方面,竞争和垄断厂商是一样的。两者都是根据既定的产量寻求最小的总可变成本,都是要使他们的企业家能力的报酬达到最大;都可能在长期均衡中使他们的企业家能力得到正数的报酬;这个“租金”对两者在计算厂商所有者的全部财富时都必须资本化,对两者来说,如果对某工厂和其产量而言,短期边际成本(对每个可能的“短期”来说)等于长期边际成本,则该工厂的“规模”就是最优的。
数学总结
我们来总结一下以上分析,同时检验它的完整性,即以联立方程的形式,给出共同决定一个竞争性产业供给曲线的条件。为了简化起见,假定单个厂商的要素供给曲线或者是有完全弹性的(可变要素),或者是完全无弹性的(固定要素),而且只要没有完全停产,将没有哪种成本是可以通过一种或多种的固定要素停业使用而避免发生的。单个厂商
每一个潜在的厂商都可用一个生产函数来描述,即:
(2)xj=fj(a1j,a2j……amj,X)
这里xj是第j个厂商的产量,A1,A2,…,Am是各种生产要素,ai是第j个厂商使用的Ai的数量,X是该产业的产量。我们假设A1,…Ak为可变要素,Ak+1,…Am为固定要素,Pai(i=1,…k)是每单位可变要素Ai的价格,aij(i=k+1,…,m)为第j个厂商可获得的固定要素Ai的数量,Px为产品的价格。那么,假定该厂商要生产某种产品,则某最优产量和最优要素组合,可以通过解由方程(2)和下列方程构成的一个方程组而求得:
(3)px[afj/aaij]=Pai(i=1,…,k)
(4)aij=aij(i=k+1,…,m)
如上所述,方程组(2)、(3)和(4)包含m+1个方程,它可以通过把m+1个变量xj、aij;(i=1,…,m)作为Px、Pai(i=1,…。k)、aij(i=k+1,…,m)和x的函数来求解。
现在,如果对Px,Pai和X的任何一组特定的值,方程组(2)、(3)和(4)的解都满足不等式
k
XiPx≥ΣaijPai+cj,
i=1
这里cj是厂商只有在停业时才能避免,而在其他情况下均不可避免的成本,而且为了简化起见假设它是独立于Pai的,那么方程(2)、(3)和(4)的解对于相应的Px、Pai和X(i=1,…,k)的值来说就是该厂商的均衡值。
但是,如果方程(2)、(3)和(4)的解满足不等式:
k
XjPx<ΣaijPai+cj,
i=1
则均衡值就由
(2)Xj=0(i=l,…,k)
(3)aij=0(i=k+1,…,m)
(4)aij=aij
给出。
要素的需求与供给
如果存在几个潜在的厂商,则每年要素的需求总量如下:
(5)n
ai=Σaij(i=1,…,m)。
j=1
对该产业的可变要素的供给可以描述为:
(6)gi=gi(Pa1,Pa2,…,Pak)(i=1,…,k)
这里gi也可能取决于其他产品的价格和类似的因素,诸如被认为对该产业是固定的变量,各固定要素的供给方程式不必包括在内,因为根据方程(4),对i=k+1,…,m来说,它们都和方程(5)完全一样。
产品的供给
最后,产品的总供给由
(7)n
X=ΣXjo
j=1
给出。
变量和方程数量
现在我们计算一下变量和方程的数量以检验其完整性。
变量如下:
名称变量符号数量
产业产量x1
每个厂商的产量xi(j=1,…,n)n
每种要素的总量ai(i=1,…,m)m
每个厂商所用每aij(i=1,…,m)mn
种要素的数量j(j=1,…,n)
产品价格Px1
可变要素的价格Pai(i=1,…,k)k
变量的总数2+k+n+m+mn
方程如下:
方程数量
(2)(3)(4)或(2)’(3)’(4)’n(m+1)
(5)m
(6)k
(7)1
方程总数1+k+n+m+mn
变量比方程多一个。所以我们可以删去所有的变量。只留下,比如,x和px以及一个方程。如果我们从所得的方程中求解X,从而得到。比如说;
(8)X=S(Px),
这个方程就是该产业的供给曲线。